Abstract

Virtual drug screening is one of the most common applications of high-throughput computing. As virtual screening is time consuming, a problem of obtaining a diverse set of hits in a short time is very important. We propose a mathematical model based on game theory. Task scheduling for virtual drug screening in high-performance computational systems is considered as a congestion game between computing nodes to find the equilibrium solutions for best balancing between the number of interim hits and their chemical diversity. We present the developed scheduling algorithm implementation for Desktop Grid and Enterprise Desktop Grid, and perform comprehensive computational experiments to evaluate its performance. We compare the algorithm with two known heuristics used in practice and observe that game-based scheduling outperforms them by the hits discovery rate and chemical diversity at earlier steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.