Abstract
A model Hamiltonian based on the vibronic coupling model is developed to describe the excited state dynamics of 3-pyrroline. With the use of the method of improved relaxation in conjunction with the MCTDH wavepacket propagation algorithm, vibrational eigenstates corresponding to both the axial and equatorial conformers of 3-pyrroline are calculated and subsequently used in a conformer-resolved study of the photodissociation of 3-pyrroline following excitation to its S1(3s/πσ*) and S2(3px) states. In analogy with ammonia, the excited state dynamics of both conformers of 3-pyrroline are found to be dominated by the (quasi-) planarization of the molecule in its electronically excited states and predominantly diabatic behavior of dissociation mediated by a conical intersection between the S1 and S0 states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.