Abstract
The signaling state metarhodopsin II of the visual pigment rhodopsin decays to the apoprotein opsin and all-trans retinal, which are then regenerated to rhodopsin by the visual cycle. Opsin is known to have at neutral pH only a small residual constitutive activity toward its G protein transducin, which is thought to play a considerable role in light adaptation (bleaching desensitization). In this study we show with Fourier-transform infrared spectroscopy that after metarhodopsin II decay, opsin exists in two conformational states that are in a pH-dependent equilibrium at 30 degrees C with a pK of 4.1 in the presence of hydroxylamine scavenging the endogenous all-trans retinal. Despite the lack of the native agonist in its binding pocket, the low pH opsin conformation is very similar to that of metarhodopsin II and is likewise stabilized by peptides derived from rhodopsin's cognate G protein, transducin. The high pH form, on the other hand, has some conformational similarity to the inactive metarhodopsin I state. We therefore conclude that the opsin apoprotein displays intrinsic conformational states that are merely modulated by bound all-trans retinal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.