Abstract

Complexes that could be switched between two electronic states by external stimuli have attracted much attention for their potential application in molecular devices. However, a realization of such a phenomenon with low-valent main-group element-centered complexes remains challenging. Herein, we report the synthesis of cyclic (alkyl)(amino)silylene (CAASi)-ligated monatomic silicon(0) complexes (silylones). The bis(CAASi)-ligated silylone adopts a π-localized ylidene structure (greenish-black color) in the solid state and a π-delocalized ylidene structure (dark-purple color) in solution that could be reversibly switched upon phase transfer (ylidene [L: → :Si = L ↔ L = Si: ← :L]). The observed remarkable difference in the physical properties of the two isomers is attributed to the balanced steric demand and redox noninnocent character of the CAASi ligand which are altered by the orientation of the two terminal ligands with respect to the Si-Si-Si plane: twisted structure (π-localized ylidene) and planar structure (π-delocalized ylidene). Conversely, the CAASi/CDASi-ligated heteroleptic silylone (CDASi = cyclic dialkylsilylene) only exhibited the twisted π-localized ylidene structure regardless of the phase. The synthesized silylones also proved themselves as monatomic silicon surrogates. Thermolysis of the silylones in the presence of an ethane-1,2-diimine afforded the corresponding diaminosilylenes. Analyses of the products suggested a stepwise mechanism that proceeds via a disilavinylidene intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.