Abstract

The conformational structures of 2-deoxyuridine (dU) were investigated using Fourier transform infrared (FTIR) matrix isolation spectroscopy. For the first time the FTIR spectra of dU in Ar matrices were obtained in the range 4000–200 cm−1. The stabilities of conformers were estimated by the methods HF/3-21G (p), HF/6-31G (d,p) and MP2/6-31G (d,p). Ab initio calculations of the infrared spectra were performed by the methods HF/3-21G (p) and HF/6-31G (d,p). The actual occupancy of conformational isomers in matrix samples was determined. It was shown that anti-conformers of dU are dominant. The ribose rings of the main anti-conformers dU _a0, dU _a1 are in the C2′-endo conformation, but the ribose rings of minor anti-conformers dU_a2, dU_a3 have the C3′-endo conformation, stabilized by intramolecular hydrogen bonds O3′H⋯O5′ and O5′H⋯O3′, accordingly. Syn-conformers of dU are stabilized by the intramolecular hydrogen bond O5′H⋯O2 and the dominant conformation of the ribose ring is C2′-endo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.