Abstract

AbstractProtein‐ligand interactions are crucial for many cellular processes, with details of the binding mechanism being discussed as essential for biological functions. Interestingly, protein binding often involves conformational changes between two or more states, whereby different binding mechanisms are possible even with a simple two‐state description. Two models are widely used to portray protein‐ligand interactions: Induced fit and conformational selection. However, distinguishing them experimentally is challenging. Single‐molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool to resolve structural dynamics at the level of single proteins. Here, we investigated immobilized Zika virus (ZIKV) and dengue virus (DENV2) NS2B‐NS3 proteases using smFRET to compare their conformational changes upon binding to competitive small molecule inhibitors. The analysis of the smFRET data allowed us to distinguish between induced fit and conformational selection models and assign the binding mechanism from the kinetic parameters obtained. Although DENV and ZIKV protease are proteins with high structural similarities, our results reveal that they have opposite binding mechanisms for competitive ligands. While the protein‐ligand interaction in the ZIKV protease follows an induced fit mechanism, the DENV protease follows the conformational selection mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.