Abstract
We have studied large-scale conformational transitions in the maltose-binding protein, and the nucleotide binding domains of a maltose-transporter using enhanced conformational sampling in Cartesian collective variables (CVs) with temperature-accelerated molecular dynamics (TAMD), and C(α)-based elastic network normal mode analysis. Significantly, every functional displacement in the TAMD-generated pathways of each protein could be rationalized via a single low-frequency soft mode, while a combination of 2 to 3 low-frequency modes were found to describe the entire conformational change suggesting that collective functional movement in TAMD trajectories is facilitated by the intrinsically accessible low-frequency normal modes. By applying a harmonic potential to facilitate functional motion in TAMD simulations, we also provide a recipe to reproducibly generate structural transitions in both proteins, which can be used to characterize large-scale conformational changes in other biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.