Abstract

Inulin, levan and arabinan are the polysaccharides that consist of exclusively furanose units. To date, their conformational features studied at the molecular scale have remained largely unexplained. To tackle this issue, we have performed a series of explicit-solvent molecular dynamics simulations, carried out within the furanose-dedicated force field. None of the polysaccharides exhibits a single, dominating structure type. Instead, they create a large number of separated conformational states originating from the intensive rotation around the φ and ω glycosidic angles. 21-helices are the preferential conformational forms for all compounds but they appear only locally, at the length of several consecutive residues. The flexibility of all three furanose-based polysaccharides is much greater in relation to the (1–4)-linked pyranose polysaccharides and is comparable to that of (1–6)-linked pyranoses. The dynamic geometries of both furanose rings and glycosidic linkages are nearly unchanged independently if considering them at the level of mono-, di- or polysaccharides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.