Abstract

The conformational flexibility of three covalently linked dimers consisting of two xanthene‐based moieties connected by a diphenyl ether linker was studied using NMR spectroscopy, X‐ray crystallography, and density functional theory (DFT) calculations. The three dimers interconvert as a function of pH: the doubly cationic dimer (Xan+)2 exists in acidic solutions (pH < 0.5), the mono‐alcohol monocation Xan+–Xan‐OH at intermediate pH values (pH = 1–3), and the neutral diol at the highest pH‐values (pH > 3). Each dimer exhibits conformational degrees of freedom associated with rotations of either the xanthene moiety or of the diphenyl ether (DPE) linker. The barriers for rotation of the xanthylium moiety were evaluated using DFT calculations, yielding values of 23 kcal/mol for (Xan+)2 and 11 kcal/mol for (Xan‐OH)2, respectively. The rotational barrier for the diphenyl ether linker in Xan+–Xan‐OH (15 kcal/mol) was experimentally determined using variable temperature NMR measurements. The relative orientation of the two –OH groups in (Xan‐OH)2 diol was investigated in solution and the solid state using NMR spectroscopy and X‐ray crystallography. The conformer observed in the solid state was found to be the In–Out conformer, while free rotation of the xanthenol units is thought to occur on the NMR timescale at room temperature. These studies are relevant for the design of linkers for efficient water oxidation catalysts. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.