Abstract

Photopolymerization of methacrylic monomers yields samples with trapped radicals that are easily detected by electron paramagnetic resonance (EPR) spectroscopy. Despite its simplicity, there is no general agreement about the interpretation of this spectrum, in particular, about the role of methylene β protons. An extensive ENDOR study of the propagating radical in photopolymerized dimethacrylates has been carried out in order to obtain detailed information about methylene hyperfine couplings and, thus, about radical conformation. It is shown that literature models are not able to reproduce the ENDOR results and that only accurate fitting of ENDOR spectra obtained by saturating the EPR spectrum at different positions gives reliable information about radical conformation, thanks to the exploitation of conformational selectivity. It turns out that most radicals are in the minimum energy conformation, but any possible conformation is assumed by non negligible fractions of radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.