Abstract

Global analysis of fluorescence and associated anisotropy decays of intrinsic tissue fluorescence offers a sensitive and non-invasive probe of the metabolically critical free/enzyme-bound states of intracellular NADH in neural tissue. Using this technique, we demonstrate that the response of NADH to the metabolic transition from normoxia to hypoxia is more complex than a simple increase in NADH concentration. The concentration of free NADH, and that of an enzyme bound form with a relatively low lifetime, increases preferentially over that of other enzyme bound NADH species. Concomitantly, the intracellular viscosity is reduced, likely due to the osmotic swelling of mitochondria. These conformation and environmental changes effectively decrease the tissue fluorescence average lifetime, causing the usual total fluorescence increase measurements to significantly underestimate the calculated concentration increase. This new discrimination of changes in NADH concentration, conformation, and environment provides the foundation for quantitative functional imaging of neural energy metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.