Abstract

Reduced thioredoxin was subjected to chemical modification studies employing organoarsenical reagents specific for "spatially close" thiols. Modification was monitored by the loss in the free thiol content, by the percent incorporation of radiolabelled organoarsenical reagents, and by observing the changes in the amounts of the various thioredoxins by size exclusion chromatography. The rate of modification depends upon the polarity, rigidity, and size of the reagents. Small nonpolar organoarsenical reagents readily modified reduced thioredoxin, whereas polar and large reagents do not. Modifications resulted in the formation of stable 15-membered cyclodithioarsenite ring structures with no apparent changes in the secondary structure of the protein. Modification was reversed by the extrusion of the arsenical moiety by addition of 2,3-dimercaptopropanol. We have further characterized the oxidized, reduced, and modified thioredoxins by size exclusion chromatography and fluorescence anisotropy decay measurements. Both techniques show an increase in the hydrated volume of the protein upon reduction. Upon modification, the hydrodynamic volume of the protein further swells. Fluorescence anisotropy decay reveals that with modification there is loosening of the protein so that a "domain" containing the fluorophores can relax independently of the whole protein structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.