Abstract

A model of the early universe in the Einstein theory of gravitation, supplemented by a conformalty invariant version of the Weinberg—Salam model, is considered. The conformai symmetry principle leads to the need to eliminate the Higgs potential from the expression for gravitational action, using the Lagrangian density of the model of Weinberg—Salam electroweak interactions as the material source, and to incorporate the conformally invariant Penrose—Chernikov—Tagirov term. In the limit of flat space, we arrive at the a version of the Weinberg—Salam model without Higgs particle-like excitations. In the conformalty invariant model under consideration, Higgs fields are absorbed by the spatial metric, so one can assume that the masses of elementary particles originate at the time when the evolution of the universe begins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.