Abstract
Abstract : The author describes a method of calculating conformal mappings of any given finitely connected region onto a region with arbitrarily specified boundary shapes. If the specified shapes are rectangles, than this method can be used to generate conformal grids which should be useful for numerical solution of many partial differential equations, for example in calculating the airflow past an airflow with flaps or the flow of cooling water past fuel pins in a nuclear reactor. He has proved that there exists a conformal mapping of any given finitely connected region onto a region with arbitrarily specified boundary shapes. The construction in the proof has been adapted for computer implementation. Some examples have been worked to determine the region bounded by circles which is the image of a given region in the extended complex plane under a conformal mapping taking infinity to infinity. A region whose outer boundary is a rectangle is mapped conformally to a region with all rectangular boundaries, and the vertices of the outer boundaries correspond. Mappings onto regions bounded by rectangles should be of considerable use in grid generation for numerical solution of partial differential equations. Grids have been calculated for one simple example. (Author)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.