Abstract

Simulations of the two-dimensional self-avoiding walk (SAW) are performed in a half-plane and a cut-plane (the complex plane with the positive real axis removed) using the pivot algorithm. We test the conjecture of Lawler, Schramm, and Werner that the scaling limit of the two-dimensional SAW is given by Schramm's stochastic Loewner evolution (SLE). The agreement is found to be excellent. The simulations also test the conformal invariance of the SAW since conformal invariance implies that if we map infinite length walks in the cut-plane into the half plane using the conformal map \(z \to \sqrt z\), then the resulting walks will have the same distribution as the SAW in the half plane. The simulations show excellent agreement between the distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.