Abstract

High specific capacitance coupled with the ease of large scale production is two desirable characteristics of a potential pseudo-supercapacitor material. In the current study, the uniform and conformal coating of nickel-cobalt layered double hydroxides (CoNi0.5LDH,) nanoflakes on fibrous carbon (FC) cloth has been achieved through cost-effective and scalable chemical precipitation method, followed by a simple heat treatment step. The conformally coated CoNi0.5LDH/FC electrode showed 1.5 times greater specific capacitance compared to the electrodes prepared by conventional non-conformal (drop casting) method of depositing CoNi0.5LDH powder on the carbon microfibers (1938 Fg−1 vs 1292 Fg−1). Further comparison of conformally and non-conformally coated CoNi0.5LDH electrodes showed the rate capability of 79%: 43% capacity retention at 50 Ag−1 and cycling stability 4.6%: 27.9% loss after 3000 cycles respectively. The superior performance of the conformally coated CoNi0.5LDH is mainly due to the reduced internal resistance and fast ionic mobility between electrodes as compared to non-conformally coated electrodes which is evidenced by EIS and CV studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.