Abstract

Sodium based dual-ion battery (SDIB) has been regarded as one of the promising batteries technologies thanks to its high working voltage and natural abundance of sodium source, its practical application yet faces critical issues of low capacity and sluggish kinetics of intercalation-type graphite anode. Here, a tubular nanohybrid composed of building blocks of carbon-film wrapped WS2 nanosheets on carbon nanotube (WS2 /C@CNTs) was reported. The expanded (002) interlayer and dual-carbon confined structure endowed WS2 nanosheets with fast charge transportation and excellent structural stability, and thus WS2 /C@CNTs showed highly attractive electrochemical properties for Na+ storage with high reversible capacity, fast kinetic, and robust durability. The full sodium-based dual ion batteries by coupling WS2 /C@CNTs anode with graphite cathode full cell presented a high reversible capacity (210 mAh g-1 at 0.1 A g-1 ), and excellent rate performance with a high capacity of 137 mAh g-1 at 5.0 A g-1 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.