Abstract

Liquid water confined within nanometer-sized channels exhibits a surprisingly low dielectric constant along the direction orthogonal to the channel walls. This is typically assumed to result from a pronounced heterogeneity across the sample: the dielectric constant would be bulk-like everywhere except at the interface, where it would be dramatically reduced by strong restrictions on interfacial molecules. Here we study the dielectric properties of water confined within graphene slit channels via classical molecular dynamics simulations. We show that the permittivity reduction is not due to any important alignment of interfacial water molecules, but instead to the long-ranged anisotropic dipole correlations combined with an excluded-volume effect of the low-dielectric confining material. The bulk permittivity is gradually recovered only over several nanometers due to the impact of long-range electrostatics, rather than structural features. This has important consequences for the control of, e.g., ion transport and chemical reactivity in nanoscopic channels and droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.