Abstract

This study experimentally investigates fluid structure interactions occurring during confined implosions using high-speed digital image correlation (DIC). Aluminum tubular specimens are placed inside a confining cylindrical structure with one end open to a pressurized environment. These specimens are exposed to hydrostatic pressure, which is slowly increased until they collapse onto themselves. The implosion event is viewed through an acrylic window on the confining structure. Full field deformation and velocities are captured with DIC and are synchronized with the pressure history. Experiments show that implosion inside a confining structure leads to extremely high oscillating water hammer effects. Both peak structural velocities and hammer impulses increase linearly with increasing collapse pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.