Abstract
Abstract In recent years, the concept of hyperbolic phonon polaritons (HPPs) has revolutionized the field of nanophotonic, enabling unprecedented control over light-matter interactions at the nanoscale. Here, we theoretically propose and study the lateral optical forces in twisted mixed-dimensional MoO3 homostructures. Assisted with the low-symmetry HPPs, we realize a lateral optical force exerted on the Au nanoparticles near the surface of mixed-dimensional MoO3 homostructures with a linear polarized incident light. By controlling the polarization state, incident angle of light and the twisted angle of MoO3, the amplitude and direction of the lateral optical forces can be tailored in the mid-infrared range. Our findings provide a new platform for engineering lateral optical forces to manipulate diverse objects in a flexible and efficient manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.