Abstract

The equations for calculating classical confidence intervals on the end points of stratigraphic ranges are based on the restrictive assumption of randomly distributed fossil finds. Herein, a method is presented for calculating confidence intervals on the end-points of stratigraphic ranges that partially relaxes this assumption: the method will work for any continuous distribution of gap sizes, not just those generated by random processes. The price paid for the generality of the new approach is twofold: (1) there are uncertainties associated with the sizes of the confidence intervals, and (2) for large confidence values (e.g., 95%) a rich fossil record is required to place upper bounds on the corresponding confidence intervals. This new method is not universal; like the method for calculating classical confidence intervals it is based on the assumption that there is no correlation between gap size and stratigraphic position. The fossil record of the Neogene Caribbean bryozoan Metrarabdotos is analyzed with the new approach. The equations developed here, like those for classical confidence intervals, should not be applied to stratigraphic ranges based on discrete sampling regimes, such as those typically established from deep-sea drilling cores, though there are exceptions to this rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.