Abstract

ABSTRACT ARMA–GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.