Abstract
Decision tree classifiers are a widely used tool in data stream mining. The use of confidence intervals to estimate the gain associated with each split leads to very effective methods, like the popular Hoeffding tree algorithm. From a statistical viewpoint, the analysis of decision tree classifiers in a streaming setting requires knowing when enough new information has been collected to justify splitting a leaf. Although some of the issues in the statistical analysis of Hoeffding trees have been already clarified, a general and rigorous study of confidence intervals for splitting criteria is missing. We fill this gap by deriving accurate confidence intervals to estimate the splitting gain in decision tree learning with respect to three criteria: entropy, Gini index, and a third index proposed by Kearns and Mansour. We also extend our confidence analysis to a selective sampling setting, in which the decision tree learner adaptively decides which labels to query in the stream. We provide theoretical guarantees bounding the probability that the decision tree learned via our selective sampling strategy classifies suboptimally the next example in the stream. Experiments on real and synthetic data in a streaming setting show that our trees are indeed more accurate than trees with the same number of leaves generated by state-of-the-art techniques. In addition to that, our active learning module empirically uses fewer labels without significantly hurting the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.