Abstract

Metal–insulator–metal diodes with Nb2O5 and Ta2O5 insulators deposited via atomic layer deposition are investigated. For both Nb2O5 and Ta2O5, the dominant conduction process is established as Schottky emission at small biases and Frenkel–Poole emission at large biases. Fowler–Nordheim tunneling is not found to play a role in determining current versus voltage asymmetry. The dynamic dielectric constants are extracted from conduction plots and found to be in agreement with measured optical dielectric constants. Trap energy levels at ϕT ≈ 0.62 and 0.53 eV below the conduction band minimum are estimated for Nb2O5 and Ta2O5, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.