Abstract

Hydrogels are a popular substrate for cell culture due to their mechanical properties closely resembling natural tissue. Stimuli-responsive hydrogels are a good platform for studying cell response to dynamic stimuli. Poly(N-isopropylacrylamide) (pNIPAM) is a thermo-responsive polymer that undergoes a volume-phase transition when heated to 32 °C. Conducting polymers can be incorporated into hydrogels to introduce electrically responsive properties. The conducting polymer, polypyrrole (PPy), has been widely studied as electrochemical actuators due to its electrochemical stability, fast actuation and high strains. We determine the volume-phase transition temperature of pNIPAM hydrogels with PPy electropolymerised with different salts as a film within the hydrogel network. We also investigate the electro-mechanical properties at the transition temperature (32 °C) and physiological temperature (37 °C). We show statistically significant differences in the Young's modulus of the hybrid hydrogel at elevated temperatures upon electrochemical stimulation, with a 5 kPa difference at the transition temperature. Furthermore, we show a three-fold increase in actuation at transition temperature compared to room temperature and physiological temperature, attributed to the movement of ions in/out of the PPy film that induce the volume-phase transition of the pNIPAM hydrogel. Furthermore, cell adhesion to the hybrid hydrogel was demonstrated with mouse articular chondrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.