Abstract

We present an ab initio study of the structural, electronic, and quantum transport properties of B–N-complex edge-doped graphene nanoribbons (GNRs). We find that the B–N edge codoping is energetically a very favorable process and furthermore can achieve novel doping effects that are absent for the single B or N doping. The compensation effect between B and N is predicted to generally recover the excellent electronic transport properties of pristine GNRs. For the zigzag GNRs, however, the spatially localized B–N defect states selectively destroy the doped-side spin-polarized GNR edge currents at the valence and conduction band edges. We show that the energetically and spatially spin-polarized currents survive even in the fully ferromagnetic metallic state and heterojunction configurations. This suggests a simple yet efficient scheme to achieve effectively smooth GNR edges and graphene-based spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.