Abstract
EDITOR: Sadis and colleagues [1] investigated risk factors for the development of ARDS in patients receiving multiple transfusions and found that it was not the number of transfusions but thoracic trauma and hypoxia that were associated with the subsequent development of ARDS. Patients who developed ARDS received significantly more fresh frozen plasma. Previous studies showed that septicaemia is an additional predisposing factor for transfusion-related ARDS [2]. Another condition commonly associated with pulmonary oedema during infusion of large amounts of intravenous fluids is diabetic ketoacidosis [3]. All these conditions with their different pathophysiology have in common the release of large amounts of cytokines including tumour necrosis factor (TNF) and interleukin-1 (IL-1). Transfusion of an anti-CD28 monoclonal antibody into human volunteers stimulated T-cells to release large amounts of these two cytokines and led to pulmonary oedema in all subjects of this trial [4]. The mechanism by which these cytokines lead to or predispose to pulmonary oedema has recently been clarified: Alveolar epithelial fluid clearance in pulmonary oedema is dependent on pulmonary epithelial sodium and chloride transport through the apical alveolar epithelial sodium channel and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel generating the osmotic gradient, which removes water through alveolar aquaporin channels and paracellular pathways from the alveolar air space [5]. TNF is a powerful down-regulator of alveolar epithelial sodium channel expression and was found to induce pulmonary oedema in various animal studies. IL-1 was found to reduce pulmonary alveolar epithelial sodium channel function and expression and sodium uptake in alveolar type II cells. IL-1 can also reduce pulmonary epithelial chloride transport by down-regulation of prostanoid receptors, which leads to a reduction in cyclic adenosine monophosphate (cAMP) and subsequently in cAMP-dependent CFTR function. Pulmonary oedema in meningococcal septicaemia has recently been associated with reduced systemic chloride channel function [6]. The hypoxia found in patients developing ARDS subsequently indicated a reduced fluid clearance associated with a direct cytokine effect preceding the development of ARDS. The association of ARDS with FFP administration may be related to the fact that TNF caused a coagulopathy [7] prompting the administration of FFP. Contributing to the predisposition to ARDS by inflammatory conditions may be the upregulation of P-selectins on vascular endothelial cells, which facilitates the adhesion of neutrophils in the pulmonary circulation and their subsequent migration into the alveolar space. Neutrophil leucocytes are an important source of IL-1 and TNF production. Future research needs to focus on treatments that can prevent the development of ARDS associated with cytokine-induced reduction of alveolar fluid clearance. The prophylactic application of beta-agonists, which are able to up-regulate alveolar epithelial sodium and chloride transport and were found to reduce lung water in the recent beta agonist lung injury trial, may be able to reduce the risk of this complication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.