Abstract
We investigate the possibility of sustained orbital resonances in extreme mass ratio inspirals. Using a near-identity averaging transformation, we reduce the equations of motion for a particle moving in Kerr spacetime with self-force corrections in the neighbourhood of a resonant geodesic to a one dimensional equation for a particle moving in an effective potential. From this effective equation we obtain the necessary and sufficient conditions that the self-force needs to satisfy to allow inspiralling orbits to be captured in sustained resonance. Along the way we also obtain the full non-linear expression for the jump in the adiabatic constants of motion incurred as an inspiral transiently evolves through a strong resonance to first-order in the mass ratio. Finally, we find that if the resonance is strong enough to allow capture in sustained resonance, only a small fraction (order of the square root of mass-ratio) of all inspirals will indeed be captured. This makes observation of sustained resonances in EMRIs -- if they exist -- very unlikely for space based observatories like eLisa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.