Abstract

Speedball (heroin + cocaine) is a prevalent drug combination among intravenous drug users. Although its use is generally discussed to be a function of changes in the rewarding effects of either or both drugs, changes in the aversive effects of either drug may also be impacted (weakened) by the combination. To address this latter possibility and its potential role in the use of speedball, the present studies examined the interaction of cocaine and heroin in taste avoidance conditioning. In Experiment 1, male Sprague-Dawley rats were given access to a novel saccharin solution and then injected with either vehicle or heroin (3.2 mg/kg, IP) followed immediately by various doses of cocaine (10, 18 or 32 mg/kg, SC). At the two lowest doses of cocaine, only animals injected with the drug combination (H + C) displayed a taste avoidance relative to control subjects (taste avoidance was induced with both the combination and the high dose of cocaine). At no dose did animals injected with the combination of heroin and cocaine drink more than animals injected with cocaine alone. In Experiment 2, male Sprague-Dawley rats were similarly treated but injected with vehicle or cocaine (10 mg/kg) followed by injections of various doses of heroin (1.8, 3.2, 5.6 or 10 mg/kg). At the three highest doses of heroin, only animals injected with the drug combination (C + H) displayed significant avoidance relative to control subjects (no avoidance was evident with the combination of cocaine and the low dose of heroin). At no dose did animals injected with the combination of cocaine and heroin drink more than animals injected with heroin alone. Together, these results suggest that the aversive effects of heroin and cocaine are not attenuated by co-administration by cocaine and heroin, respectively. The importance of this for the use of speedball was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.