Abstract
AimThe study was carried out to evaluate the role of preconditioning strategies on the trans-differentiation of mature fibroblasts (NIH3T3 cells) into insulin producing β-cells. MethodsThe NIH3T3 cells were treated with dexamethasone (5μM) and pancreatic extract (0.05 and 0.4mg/mL) separately or in combination. The treated cells were analyzed for the morphological changes, and expression of pancreatic genes and proteins by phase contrast microscopy, RT-PCR and flow cytometry/immunocytochemistry, respectively. ResultsTreatment of mature fibroblasts with different combinations of dexamethasone and pancreatic extract in the form of conditioned media resulted in comparable morphological changes and expression of certain pancreatic genes and proteins; however, their expression varied with each treatment. Most prominent effect was observed in case of combined treatment which resulted in significant increase (p<0.001) in gene expression levels of insulin, MafA, and Ngn3. Variable pattern was observed in insulin, MafA, Ngn3 and Sca1 expressions at the protein level. ConclusionIt is concluded from this study that preconditioning of NIH3T3 cells with conditioned media containing different combinations of dexamethasone and pancreatic extract can induce trans-differentiation of these cells into pancreatic β-like cells. The conditioned media however, need to be optimized. The study may offer the possibility of improved regeneration of mature cell type that could serve as a future therapeutic option for diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.