Abstract

This study addresses the challenge of diagnosing motor faults in long-tailed data distributions, characterized by dominant healthy states and rare fault types. We propose the LT-CVAE-GAN model, which integrates a Conditional Variational Autoencoder (CVAE) with a Conditional Generative Adversarial Network (CGAN) to enhance long-tailed fault diagnosis. Initially, we train the CVAE-GAN model using traditional CVAE and CGAN losses such as Kullback–Leibler (KL) divergence loss, reconstruction loss, and adversarial loss. Additionally, we introduce mean feature matching loss and pairwise feature matching loss to mitigate mode collapse and improve model stability, thereby enhancing the generation ability of less frequent fault samples under long-tail conditions. Subsequently, the pre-trained Generator is used to produce infrequent fault mode data to rebalance the dataset. Classifier parameters are fine-tuned in this step to improve fault diagnosis accuracy. Experimental results demonstrate that our LT-CVAE-GAN surpasses state-of-the-art models in diverse long-tailed conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.