Abstract

An inverse problem to identify unknown coefficients of a partial differential equation by a single interior measurement is considered. The equation considered in this paper is a strongly elliptic second order scalar equation which can have complex coefficients in a bounded domain with C2 boundary. We are given a single interior measurement. This means that we know a given solution of the forward equation in this domain. The equation includes some model equations arising from acoustics, viscoelasticity and hydrology. We assume that the coefficients are piecewise analytic. Our major result is the local Hölder stability estimate for identifying the unknown coefficients. If the unknown coefficient is a complex coefficient in the principal part of the equation, we assumed a condition which we name admissibility assumption for the real part and imaginary part of the difference of two complex coefficients. This admissibility assumption is automatically satisfied if the complex coefficients are real valued. For identifying either the real coefficient in the principal part or the coefficient of the 0th order of the equation, the major result implies global uniqueness for the identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.