Abstract
This paper presents an approach for modelling combustion in homogeneous charge compression ignition (HCCI) conditions based on the first order conditional moment closure (CMC) method. The model is implemented into the open source C++ computational fluid dynamic (CFD) code known as OpenFOAM. Direct numerical simulations (DNSs) are used to evaluate the performance of the CFD-CMC solver. In the two-dimensional (2D) DNS cases, ignition of a lean n-heptane/air mixture with thermal inhomogeneities is simulated for nine cases, with two different mean temperatures and several different levels of thermal stratification. Results from the CFD-CMC solver are in excellent agreement with the DNS for cases which exhibit a spontaneous sequential ignition mode of combustion whereas for the cases in which a mixed mode of deflagration and spontaneous ignition exists, the CMC underpredicts the ignition delay. Further investigation using the DNS data demonstrates that this discrepancy is primarily attributed to the first order closure assumption. Conditional fluctuations are found to be more significant in the case with deflagrations. Further analysis of the DNS shows that scalar dissipation fluctuations are the cause of conditional fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.