Abstract

Developing deep neural network (DNN) models for computer vision applications for construction is challenging due to the shortage of training data. To address this issue, we proposed a novel data augmentation method that integrates a conditional generative adversarial networks (GANs) framework with a target classifier. The integrated architecture enables adversarial attack and defense during end-to-end training, thereby making it possible to generate effective images for the target classifier’s training. We trained and tested two image classification DNNs with and without data augmentation, where we confirmed the effectiveness of the proposed method: with the data augmentation, the classification accuracy improved by 4.2 percentage points, from 71.24% to 75.46%, with qualitatively improved feature extraction more focused on the target object. Given that the application areas of our method are open-ended, the result is noteworthy. The proposed method can help construction researchers offset the data insufficiency, which will contribute to having more accurate and scalable DNN-powered vision models in construction applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.