Abstract

We propose a new condition-based maintenance policy for complex systems, based on the status (working, defective) of all components within a system, as well as the reliability block diagram of the system. By means of the survival signature, a generalization of the system signature allowing for multiple component types, we obtain a predictive distribution for the system survival time, also known as residual life distribution, based on which of the system’s components currently function or not, and the current age of the functioning components.The time to failure of the components of the system is modeled by a Weibull distribution with a fixed shape parameter. The scale parameter is iteratively updated in a Bayesian fashion using the current (censored and non-censored) component lifetimes. Each component type has a separate Weibull model that may also include test data.The cost-optimal moment of replacement for the system is obtained by minimizing the expected cost rate per unit of time. The unit cost rate is recalculated when components fail or at the end of every (very short) fixed inter-evaluation interval, leading to a dynamic maintenance policy, since the ageing of components and possible failures will change the cost-optimal moment of replacement in the course of time. Via numerical experiments, some insight into the performance of the policy is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.