Abstract

This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.