Abstract

While the classical discontinuous deformation analysis (DDA) is applied to the analysis of a given block system, one must preset stiffness parameters for artificial springs to be fixed during the open-close iteration. To a great degree, success or failure in applying DDA to a practical problem is dependent on the spring stiffness parameters, which is believed to be the biggest obstacle to more extensive applications of DDA. In order to evade the introduction of the artificial springs, this study reformulates DDA as a mixed linear complementarity problem (MLCP) in the primal form. Then, from the fact that the block displacement vector of each block can be expressed in terms of the contact forces acting on the block, the condensed form of MLCP is derived, which is more efficient than the primal form. Some typical examples including those designed by the DDA inventor are reanalyzed, proving that the procedure is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.