Abstract

We study a mass transport model, where spherical particles diffusing on a ring can stochastically exchange volume v, with the constraint of a fixed total volume V= sum(i=1) (N)v(i), N being the total number of particles. The particles, referred to as p-spheres, have a linear size that behaves as v(i) (1/p) and our model thus represents a gas of polydisperse hard rods with variable diameters v(i) (1/p). We show that our model admits a factorized steady state distribution which provides the size distribution that minimizes the free energy of a polydisperse hard-rod system, under the constraints of fixed N and V. Complementary approaches (explicit construction of the steady state distribution on the one hand; density functional theory on the other hand) completely and consistently specify the behavior of the system. A real space condensation transition is shown to take place for p>1; beyond a critical density a macroscopic aggregate is formed and coexists with a critical fluid phase. Our work establishes the bridge between stochastic mass transport approaches and the optimal polydispersity of hard sphere fluids studied in previous articles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.