Abstract
We study condensation in several particle systems related to the inclusion process. For an asymmetric one-dimensional version with closed boundary conditions and drift to the right, we show that all but a finite number of particles condense on the right-most site. This is extended to a general result for independent random variables with different tails, where condensation occurs for the index (site) with the heaviest tail, generalizing also previous results for zero-range processes. For inclusion processes with homogeneous stationary measures we establish condensation in the limit of vanishing diffusion strength in the dynamics, and give several details about how the limit is approached for finite and infinite systems. Finally, we consider a continuous model dual to the inclusion process, the so-called Brownian energy process, and prove similar condensation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.