Abstract

We synthesized a boron-doped reduced graphene oxide (BrGO) material characterized by various electrical properties, through simultaneous thermal reduction and doping procedures, using a metal–organic chemical vapor deposition technique. X-ray photoelectron spectroscopy (XPS) was used to study the impact of the doping level on the B bonding in the reduced graphene oxide (rGO) layer that is influenced by the annealing temperature. The synthesized BrGO layer demonstrated a high B concentration with a considerable number of O-B bonds, that were altered by annealing temperatures. This resulted in a decreased work function and the formation of a Schottky contact between the BrGO and n-type Si substrate. Due to the higher proportion of B-C and B-C3 bonding in the BrGO/Si device than that in the rGO/Si, the decreased Schottky barrier height of the BrGO/n-Si vertical junction photodetector resulted in a higher responsivity. This study showcases a promise of a simple B-doping method in use to alter the electrical characteristics of graphene materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.