Abstract

Energy harvesting is a promising technique to overcome the limit on energy availability and increase the lifespan of battery-powered embedded systems. In this paper, the question of how one can achieve the prolonged lifespan 1 of a real-time embedded system with energy harvesting capability (RTES-EH) is investigated. The RTES-EH comprises a photovoltaic (PV) panel for energy harvesting, a supercapacitor for energy storage, and a real-time sensor node as the embedded load device. A global controller performs simultaneous optimal operating point tracking for the PV panel, state-of-charge (SoC) management for the supercapacitor, and energy-harvesting-aware real-time task scheduling with dynamic voltage and frequency scaling (DVFS) for the sensor node, while employing a precise solar irradiance prediction method. The controller employs a cascaded feedback control structure, where an outer supervisory control loop performs real-time task scheduling with DVFS in the sensor node while maintaining the optimal supercapacitor SoC for improved system availability, and an inner control loop tracks the optimal operating point of the PV panel on the fly. Experimental results show that the proposed global controller lowers the task instance drop rate by up to 63% compared with the baseline controller within the same service time (i.e., from sunrise to sunset). 1 The lifetime of a battery is usually less than five years, and in this paper we propose to use supercapacitor instead of battery for embedded systems to prolong the lifespan of the whole system to more than 20 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.