Abstract

AbstractIn this work an instance of the general problem occurring when optimizing multicomponent materials is treated: can components be optimized separately or the optimization should occur simultaneously? This problem is investigated from a computational perspective in the domain of donor–acceptor pairs for organic photovoltaics, since most experimental research reports optimization of each component separately. A collection of organic donors and acceptors recently analyzed is used to train nonlinear machine learning models of different families to predict the power conversion efficiency of donor–acceptor pairs, considering computed electronic and structural parameters of both components. The trained models are then used to predict photovoltaic performance for donor–acceptor combinations for which experimental data are not available in the data set. Data structure, and the usefulness of the trained models are critically assessed by predicting some donor–acceptor pairs that recently appeared in the literature, and the best combinations are proposed as worth investigating experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.