Abstract

In this paper, an event-based neuro-adaptive robust tracking controller for a perturbed and networked differential drive mobile robot (DMR) is designed with concurrent learning. A radial basis function neural network, which approximates an unknown perturbation, is used to design an adaptive sliding mode controller (SMC). The RBFNN weights and SMC parameters are estimated online using an adaptive tuning law to ensure performance with reduced chattering. To improve the convergence of RBFNN weight estimation error, a concurrent learning-based adaptive law is derived, which uses measured online and recorded data. Further, a suitable triggering condition is designed to achieve a reduced number of control computations while minimizing network resources without sacrificing the stability of the sampled data closed-loop control system. A finite sampling frequency is guaranteed for the designed triggering condition by establishing a positive lower bound on the inter-event execution time which is equivalent to the Zeno-free behaviour of the system. Finally, the proposed event-based neuro-adaptive robust controller is implemented on a practical system (Q-bot 2e) to show the effectiveness of the proposed design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.