Abstract

Although mutation of mitochondrial DNA (mtDNA) in human tissues has been established to associate with intrinsic aging, the impact of environmental factors on the formation and accumulation of mtDNA mutations and oxidative DNA damage in human tissues is poorly understood. We have investigated the levels of mtDNA with the 4977-bp deletion and A3243G point mutation, oxidative DNA damage (indicated by the formation of 8-hydroxy-2′-deoxyguanosine, 8-OH-dG), and lipid peroxides in lung tissues from smokers and nonsmokers of subjects of different ages. The results showed concurrent age-dependent increase of the 4977-bp deleted mtDNA (P< 0.001), 8-OH-dG (P< 0.05), and lipid peroxides (P< 0.05) in the human lung. In the group of subjects above 60 years old, smokers had more extensive DNA damage and lipid peroxidation than did the nonsmokers. However, the levels of mtDNA with the 4977-bp deletion and A3243G point mutation in the lung of smokers were not significantly different from those of the age-matched nonsmokers. Taken together, these results suggest that accumulation of mtDNA with the 4977-bp deletion together with oxidative DNA damage and lipid peroxides is associated with aging and that smoking enhances oxidative damage in human lung tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.