Abstract

Cancer metastasis, which increases the mortality in a short period of time, has been considered as the main challenge in tumor treatment. However, tumor growth suppression also should not be ignored in cancer metastasis treatment. Recently, accumulating evidences have suggested that mitochondria play an important role in mitigating caner metastasis. Nucleus, as the repository of genetic information, plays a key role in cell proliferation. However, it remains elusive that the concurrent impairment of nucleus and mitochondria may achieve better anti-tumor and anti-metastatic effects. Here, we designed a mitochondria-penetrating peptide modified doxorubicin (MPP-Dox) loaded N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer conjugates (PM), as well as a nuclear accumulating HPMA copolymer Dox conjugates (PN) by the nuclear tendency of Dox. After co-delivering the two copolymers (abbreviation for PMN), PM promoted cell apoptosis and inhibited tumor metastasis by damaging mitochondria, whereas PN suppressed cell proliferation and promoted apoptosis by destroying nucleus. Importantly, PM and PN complemented each other as expected. The mitochondrial dysfunction and tumor metastasis inhibition of PM was improved by PN, while cell proliferation suppression and apoptosis by nucleus destroying of PN was enhanced by PM. As a result, tumor growth of breast cancer 4T1 cells in vivo was significantly restrained and lung metastasis was potently decreased and almost eradicated, fully reflecting the advantages of organelle targeting combination therapy. As a consequence, our work showed that concurrent impairment of nucleus and mitochondria was feasible and beneficial to metastatic cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.