Abstract

This paper develops a problem formulation that can be applied to the integrated space-station system design. The integrated space-station optimization formulation combines both a space habitat and its supporting logistics design into one single optimization problem. In this way, a space-based habitat and its logistics resupply system can be designed concurrently, and effective trades can be conducted between them. Numerical results show the benefits of the proposed problem formulation, comparing it with conventional design strategies. Data from the 2012 International Space Station reference configuration are used to develop four cases, each emphasizing a different mix of scientific experiments in orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.