Abstract

AbstractThe increasing complexity of real-world optimization problems demands fast, robust, and efficient meta-heuristic algorithms. The popularity of these intelligent techniques is gaining popularity day by day among researchers from various disciplines of science and engineering. The sine cosine algorithm is a simple population-based stochastic approach for handling different optimization problems. In this work, we have discussed the basic sine cosine algorithm for continuous optimization problems, the multi-objective sine cosine algorithm for handling multi-objective optimization problems, and the discrete (or binary) versions of sine cosine algorithm for discrete optimization problems. Sine cosine algorithm (SCA) has reportedly shown competitive results when compared to other meta-heuristic algorithms. The easy implementation and less number of parameters make the SCA algorithm, a recommended choice for performing various optimization tasks. In this present chapter, we have studied different modifications and strategies for the advancement of the sine cosine algorithm. The incorporation of concepts like opposition-based learning, quantum simulation, and hybridization with other meta-heuristic algorithms have increased the efficiency and robustness of the SCA algorithm, and meanwhile, these techniques have also increased the application spectrum of the sine cosine algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.