Abstract

In this paper, we assess the feasibility of the neoPASCAL thermal design by performing thermal analysis. NeoPASCAL is a network of compact solar-powered landers on Mars which aim to validate Mars General Circulation Models (GCMs) by measuring the diurnal variations in surface pressure. It is a modern revision of the original Pascal mission proposed in 1996, with each science station being ten times smaller in size and mass (a kg or less) by using miniaturised commercial off-the-shelf (COTS) electronic components and satellite platforms (i.e., Boardsat and CubeSat platforms). Despite the harsh thermal environments, the analysis shows that the Boardsat-based model can survive at ≤ ±60° latitude by using a large flexible-solar-cells-attached sail that was originally designed to attain soft landing. If successful, such a network would provide an unprecedented set of global meteorological data that can be used to investigate various meteorological phenomena including the general circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.