Abstract

Morphing wingtips have the potential to improve aircraft performance. By connecting the wingtips and the wings with a compliant structure, a continuous aerodynamic surface can be achieved for a better aerodynamic performance. However, how to maintain the shape-changing capability while keeping a high stiffness to carry aerodynamic loads is a key problem. In this paper, based on asymmetric stiffness, a type of single-row corrugated panel is designed to satisfy the limited space around the wingtip. A finite element model of the single-row corrugated panels is established, and parameter analysis is performed to investigate the impact of the thickness characteristics of the corrugated panel on the folding angle. The corrugated panel is then optimised to find the maximum folding angle. Based on the optimisation results, corrugated panels with asymmetric and symmetric stiffness are fabricated and tested. The results demonstrate that the asymmetric stiffness corrugated panels have the capability to increase the wingtip folding angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.