Abstract

The Maximum Likelihood Estimator (MLE) serves an important role in statistics and machine learning. In this article, for i.i.d. variables, we obtain constant-specified and sharp concentration inequalities and oracle inequalities for the MLE only under exponential moment conditions. Furthermore, in a robust setting, the sub-Gaussian type oracle inequalities of the log-truncated maximum likelihood estimator are derived under the second-moment condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.